

STM32L5 Nucleo-144 board (MB1361)

Introduction

The STM32L5 Nucleo-144 board based on the MB1361 reference board (NUCLEO-L552ZE-Q) provides an affordable and flexible way for users to try out new concepts and build prototypes by choosing from the various combinations of performance and power consumption features, provided by the STM32L5 microcontroller.

The ST Zio connector, which extends the ARDUINO[®] Uno V3 connectivity, and the ST morpho headers provide easy expansion of the functionality of the STM32 Nucleo open development platform with a wide choice of specialized shields.

The STM32L5 Nucleo-144 board does not require any separate probe as it integrates the ST-LINK/V2-1 debugger/programmer. The STM32L5 Nucleo-144 board comes with the STM32 comprehensive free software libraries and examples available with the STM32CubeL5 MCU Package.

Figure 1. STM32L5 Nucleo-144 board

Picture is not contractual.

1 Features

- STM32L552ZET6QU microcontroller (Arm® Cortex®-M33 at 110 MHz) in LQFP144 package, featuring 512 Kbytes of flash memory and 256 Kbytes of SRAM
- Internal SMPS to generate V_{core} logic supply, identified by '-Q' suffixed boards⁽¹⁾
- USB FS
- 3 user LEDs
- · RESET and USER push-buttons
- 32.768 kHz crystal oscillator
- Board connectors:
 - USB Type-C[®] connector
 - SWD
 - ARDUINO® Uno V3 expansion connector
 - ST morpho expansion connector
- Flexible power-supply options: ST-LINK USB V_{BUS}, USB connector, or external sources
- On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, Virtual COM port, and debug port
- Comprehensive free software libraries and examples available with the STM32CubeL5 MCU Package
- Support of a wide choice of Integrated Development Environments (IDEs) including IAR Embedded Workbench[®], MDK-ARM, and STM32CubeIDE
- SMPS significantly reduces power consumption in Run mode, by generating the V_{core} logic supply from an internal DC/DC converter.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

UM2581 - Rev 5 page 2/49

2 Ordering information

To order the NUCLEO-L552ZE-Q Nucleo-144 board, refer to Table 1. Additional information is available from the datasheet and reference manual of the target STM32.

Table 1. Ordering information

Order code	Board reference	Target STM32	
NUCLEO-L552ZE-Q	MB1361	STM32L552ZET6QU	

2.1 Products and codification

The meaning of the codification is explained in Table 2.

Table 2. Codification explanation

NUCLEO-XXYYZE-Q	Description	Example: NUCLEO-L552ZE-Q
XX	MCU series in STM32 Arm Cortex MCUs	STM32L5 Series
YY	MCU product line in the series STM32L552	
Z	STM32 package pin count: 2 for 144 pins 144 pins	
E	STM32 flash memory size: • E for 512 Kbytes 512 Kbytes	
-Q	STM32 has an internal SMPS function SMPS	

The order code is mentioned on a sticker placed on the top or bottom side of the board.

UM2581 - Rev 5 page 3/49

3 Development environment

3.1 System requirements

- Multi-OS support: Windows[®] 10, Linux[®] 64-bit, or macOS[®]
- USB Type-A or USB Type-C® to Micro-B cable

Note: macOS[®] is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

Linux[®] is a registered trademark of Linus Torvalds.

Windows is a trademark of the Microsoft group of companies.

3.2 Development toolchains

- IAR Systems $^{\circledR}$ IAR Embedded Workbench $^{\circledR(1)}$
- Keil® MDK-ARM⁽¹⁾
- STMicroelectronics STM32CubeIDE
- 1. On Windows® only.

UM2581 - Rev 5 page 4/49

4 Conventions

Table 3 provides the conventions used for the ON and OFF settings in the present document.

Table 3. ON/OFF convention

Convention	Definition
Jumper JPx ON	Jumper fitted
Jumper JPx OFF	Jumper not fitted
Jumper JPx [1-2]	Jumper fitted between Pin 1 and Pin 2
Solder bridge SBx ON	SBx connections closed by 0 Ω resistor
Solder bridge SBx OFF	SBx connections left open
Resistor Rx ON	Resistor soldered
Resistor Rx OFF	Resistor not soldered
Capacitor Cx ON	Capacitor soldered
Capacitor Cx OFF	Capacitor not soldered

UM2581 - Rev 5 page 5/49

5 Quick start

The STM32L5 Nucleo-144 board is a low-cost and easy-to-use development kit, to quickly evaluate and start development with an STM32L5 Series microcontroller in an LFQFP144-pin package. Before installing and using the product, accept the Evaluation Product License Agreement from the www.st.com/epla webpage. For more information on the STM32L5 Nucleo-144 board and demonstration software, visit the www.st.com/stm32nucleo webpage.

5.1 Getting started

Follow the sequence below to configure the STM32L5 Nucleo-144 board and launch the demonstration application (refer to Figure 4 for component location):

- 1. Check the jumper position on the board (refer to Default board configuration).
- 2. For the correct identification of the device interfaces from the host PC and before connecting the board, install the ST-LINK/V2-1 USB driver available on the www.st.com website.
- Connect the STM32L5 Nucleo-144 board to a PC with a USB cable (USB Type-A or USB Type-C[®] to Micro-B) through the USB connector (CN1) to power the board.
- 4. Then, the 5V_PWR green LED (LD6) lights up, while COM (LD4) and green LED (LD1) blink.
- 5. Press the USER blue button (B1)
- 6. Observe how the blinking of the LEDs (LD1, LD2, and LD3) changes, according to clicks on the button (B1).
- 7. Download the demonstration software and several software examples that help to use the STM32 Nucleo features. These are available on the www.st.com website.
- 8. Develop your application using the available examples.

5.2 Default board configuration

By default, the NUCLEO board is sent with VDD_MCU@3V3. It is possible to set the board for VDD_MCU@1V8. Before switching to 1V8, check that the extension module and external shield connected to the NUCLEO board are 1V8 compatible.

The default jumper configuration and voltage setting are shown in Table 4.

Table 4. Default jumper configuration

Jumper	Definition	Default position	Comment
CN4	SWD interface	ON [1-2] ON [3-4]	On-board ST-LINK/V2-1 debugger
JP3	T_NRST	ON	RST connected between MCU target and debugger
JP4	VDD MCU	ON [1-2]	VDD MCU voltage selection 3V3
JP5	IDD measurement	ON	MCU VDD current measurement
JP6	5V power selection	ON [1-2]	5V from ST-LINK

UM2581 - Rev 5 page 6/49

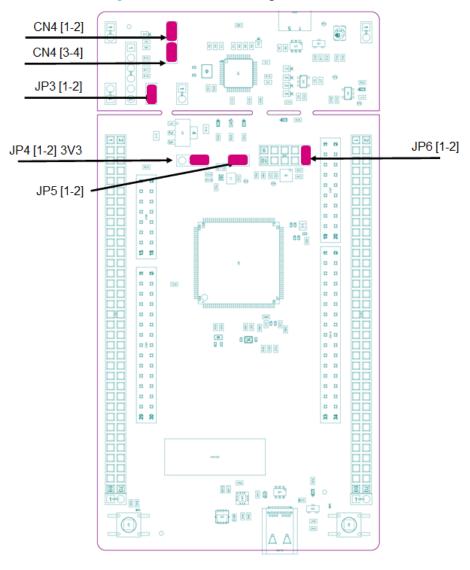


Figure 2. Default board configuration

UM2581 - Rev 5 page 7/49

6 Hardware layout and configuration

The STM32L5 Nucleo-144 board is designed around an STM32L552 microcontroller in an LFQFP 144-pin package. Figure 3 shows the connections between the STM32 and its peripherals (ST-LINK/V2-1, push-button, LEDs, USB, ST Zio connectors, and ST morpho headers). Figure 4 and Figure 5 show the location of these features on the STM32L5 Nucleo-144 board. The mechanical dimensions of the board are shown in Figure 6.

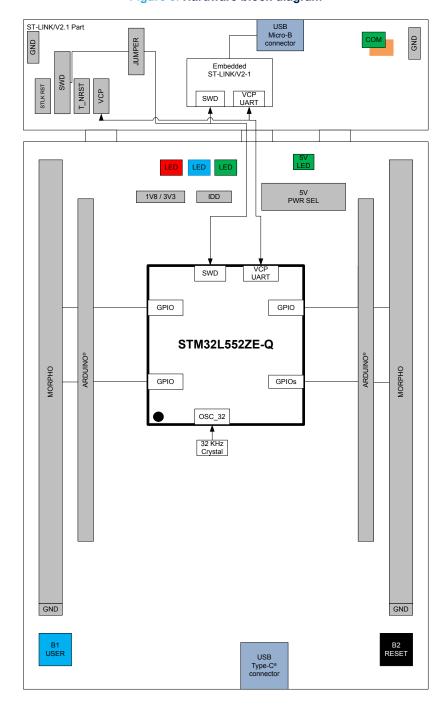


Figure 3. Hardware block diagram

UM2581 - Rev 5 page 8/49

6.1 STM32L5 Nucleo-144 board layout

USB ST-LINK ST-LINK/NUCLEO (CN1) Ġ. selector eeo oesaî COM LED (CN4) (LD4) SWD connector ST-LINK overcurrent (CN5) alarm red LED (LD5) User LEDs (LD1, LD2, and LD3) 5V Power LED (LD6) 1V8/3V3 # # 10 m m VDD selection 5V Power source (JP4) (JP6) IDD measurement Zio connector supporting ARDUINO® Uno V3 (JP5) 2 2 STM32 (CN7, CN10) Microcontroller Zio connector supporting ARDUINO® Uno V3 (CN8, CN9) 8 🔀 8 28 0 0 0 0 0 0 0 0 ST morpho pin header ST morpho pin header (CN11) (CN12) USB Type-C® connector (CN15) 0 USER button **7** F 13 RESET button (B1) (B2) ΔΔ

Figure 4. STM32L5 Nucleo-144 board top layout

UM2581 - Rev 5 page 9/49

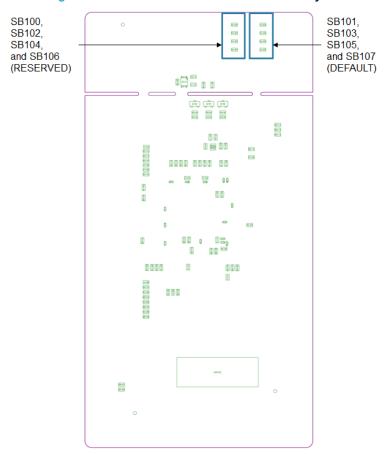


Figure 5. STM32L5 Nucleo-144 board bottom layout

UM2581 - Rev 5 page 10/49

6.2 Mechanical drawing

70,00mm 63,50 48,26 3,28 3,22 8,8 20,70 \oplus 22,86 133, 34mm 45,72 3,28 5,76 7,62 7,62 45,72

Figure 6. STM32L5 Nucleo-144 board mechanical drawing (in millimeter)

UM2581 - Rev 5 page 11/49

70,00mm

6.3 Embedded ST-LINK/V2-1

The ST-LINK/V2-1 programming and debugging tool is integrated into the STM32L5 Nucleo-144 board.

For detailed information about the debugging and programming features of ST-LINK/V2-1, refer to the *ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32* user manual (UM1075) and *Overview of ST-LINK derivatives* technical note (TN1235).

Features supported by the ST-LINK/V2-1:

- USB software re-enumeration
- Virtual COM port interface on USB
- · Mass storage interface on USB
- USB power management request for more than 100 mA power on USB

Features not supported on ST-LINK/V2-1:

- SWIM interface
- Minimum supported application voltage limited to 3.0 V

Known limitation:

Activating the readout protection on the STM32 target prevents the target application from running afterward.
 The target readout protection must be kept disabled on ST-LINK/V2-1 boards.

The embedded ST-LINK/V2-1 is directly connected to the SWD port of the target STM32.

6.3.1 Drivers

ST-LINK/V2-1 requires a dedicated USB driver, which, for Windows 7[®], Windows 8[®] and Windows 10[®], is available from www.st.com.

In cases where the STM32L5 Nucleo-144 board is connected to the PC before the driver is installed, some STM32L5 Nucleo-144 interfaces might be declared as "*Unknown*" in the PC device manager. In this case, the user must install the dedicated driver files and update the driver of the connected device from the device manager, as shown in Figure 7.

Note: It is preferable to use the USB Composite Device handle for a full recovery.

Figure 7. USB composite device

6.3.2 ST-LINK/V2-1 firmware upgrade

ST-LINK/V2-1 embeds a firmware mechanism for the in-situ upgrade through the USB port. As the firmware may evolve during the lifetime of the ST-LINK/V2-1 product (for example new functionalities, bug fixes, support for new microcontroller families), visiting the *www.st.com* website is recommended before starting to use the STM32L5 Nucleo-144 board, then periodically to stay up-to-date with the latest firmware version.

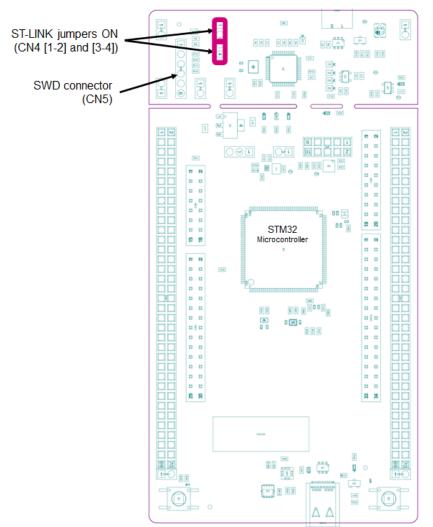
UM2581 - Rev 5 page 12/49

6.3.3 NUCLEO ST-LINK/V2-1 hardware configuration

The embedded ST-LINK/V2-1 can be used in two different ways according to the jumper states, refer to Table 5 for setting, depending on the configuration:

- Program/debug the MCU on-board
- Program/debug an MCU in an external application board using a cable connected to an SWD connector

.


Table 5. ST-LINK jumper configuration

Jumper	Definition	Default position	Comment
CN4	T SWCLK/T SWDIO	ON [1-2] ON [3-4]	ST-LINK/V2-1 functions enabled for onboard programming
ON4	1_3WOLK/1_3WDIO	OFF [1-2] OFF [3-4]	ST-LINK/V2-1 functions enabled from external connector (SWD supported)

6.3.3.1 Using the ST-LINK/V2-1 to program and debug the STM32 on-board

To program the STM32 on-board, plug in the two jumpers on CN4, as shown in Figure 8. In this case, do not use the SWD connector (CN5) as that can disturb communication with the STM32 microcontroller of the Nucleo.

Figure 8. ST-LINK debugger: JP configuration for on-board MCU

UM2581 - Rev 5 page 13/49

6.3.3.2 Using the ST-LINK/V2-1 to program and debug an external STM32 application

It is easy to use the ST-LINK/V2-1 to program the STM32 on an external application.

Simply remove the two jumpers from CN4, as shown in Figure 9, and connect your application to the SWD debug connector (CN5) according to Table 6.

Note: JP3 T_NRST (target STM32 reset) must be open when CN5 pin 5 is used with an external application.

ST-LINK jumpers OFF (CN4) o e s e š SWD connector 0 8 8 8 8 8 8 **3** 80 83 T ... (CN5) T_NRST OFF Ď (JP3) s & 2 STM32 25 25 e o 16 6 00 0 0 ***** 8 🔀 B *****

Figure 9. ST-LINK debugger: JP configuration for external MCU

Table 6. SWD debug connector (CN5) pinning

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	1	VDD_TARGET: AIN_1	-	VDD from application
	2	2	T_JTCK	-	SWD clock
CN5	3	3	GND	-	Ground
CNS	4	4	T_JTMS	-	SWD data I/O
	5	5	T_NRST	-	Reset of target MCU
	6	6	T_SWO	-	SWD out (optional)

UM2581 - Rev 5 page 14/49

6.4 Power supply

6.4.1 External power supply input

The Nucleo board is designed to be powered by several DC power supplies. It is possible to configure the Nucleo board to use any of the following sources for the power supply:

- 5V STLK from ST-LINK USB connector (CN1)
- VIN (7 to 12 V) from ARDUINO[®]-included Zio connector (CN8) or ST morpho connector (CN11)
- 5V EXT from ST morpho connector (CN11)
- 5V USB C from USB Type-C[®] connector (CN15)
- 5V CHGR from ST-LINK USB connector (CN1)
- 3V3 on ARDUINO®-included Zio connector (CN8) or ST morpho connector (CN11)

If VIN, 5V_EXT, or 3V3 is used to power a Nucleo-144 board, this power source must comply with the standard EN-60950-1: 2006+A11/2009 and must be Safety Extra Low Voltage (SELV) with limited power capability.

Table 7. Power sources capability

The power supply capabilities are summarized in Table 7.

ا۵	Connector nine	Voltage range	Max.	

Input Power name	Connector pins	Voltage range	Max. current	Limitation
5V_STLK	CN1 pin 1 JP6 [1-2]	4.75 to 5.25 V	500 mA	Maximum current depending on the presence or absence of USB enumeration: 100 mA without enumeration 500 mA with enumeration OK
VIN / 5V_VIN	CN8 pin 15 CN11 pin 24 JP6 [3-4]	7 to 12 V	800 mA	From 7 to 12 V only and input current capability is linked to input voltage: 800 mA input current when VIN = 7 V 450 mA input current when 7 V < VIN < 9 V 250 mA input current when 9 V < VIN < 12 V
5V_EXT	CN11 pin 6 JP6 [5-6]	4.75 to 5.25 V	500 mA	Maximum current depending on the power source
5V_USB_C	CN15 JP6 [7-8]	4.75 to 5.25 V	1 A	Maximum current depending on the USB host used to power the Nucleo
5V_CHGR	CN1 pin 1 JP6 [9-10]	4.75 to 5.25 V	500 mA	Maximum current depending on the USB wall charger used to power the Nucleo
3V3	CN8 pin 7 CN11 pin 16 JP5 pin 2	3.0 to 3.6 V		Is used when the ST-LINK part of PCB is not used or removed. SB3 must be OFF to protect LDO (U6).

5V_STLK is a DC power with a limitation from the ST-LINK USB connector (ST-LINK/V2-1 USB Micro-B connector). In this case, the JP6 jumper must be on pin [1-2] to select the 5V_STLK power source on the JP6 silkscreen. This is the default setting. If the USB enumeration succeeds, the 5V_STLK power is enabled, by asserting the PWR_ENn signal (from STM32F103CBT6). This pin is connected to a power switch TPS2041C, which powers the board. This power switch also features a 500 mA current limitation, to protect the PC in case of an onboard short-circuit.

The Nucleo board with its shield can be powered from the ST-LINK USB connector (CN1), but only the ST-LINK circuit has the power before USB enumeration because the host PC only provides 100 mA to the board at that time. During the USB enumeration, the Nucleo board asks for the 500mA current to the host PC. If the host can provide such a current, the enumeration finishes by a SetConfiguration command, and the power switch and the green LED (LD6) are turned ON, thus Nucleo board with its shield can consume a 500 mA current, but no more. If the host is not able to provide the requested current, the enumeration fails. Therefore, the power switch remains OFF and the MCU part including the extension board is not powered, and the green LED (LD6) remains turned OFF. In this case, it is mandatory to use an external power supply.

UM2581 - Rev 5 page 15/49

5V STLK configuration: Jumper JP6 [1-2] must be connected as shown in Figure 10.

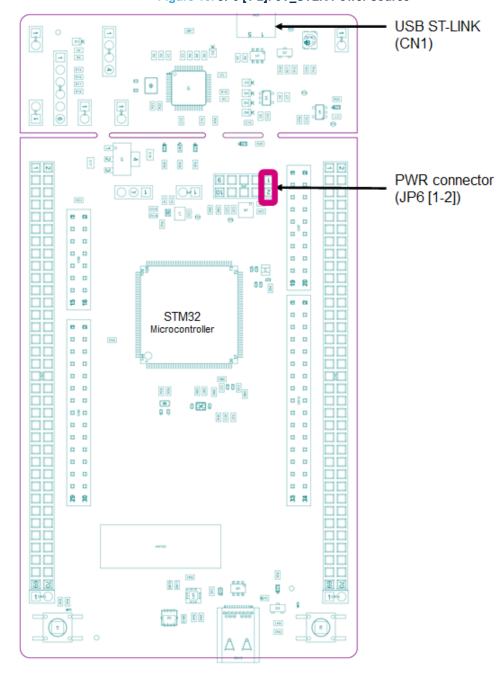


Figure 10. JP6 [1-2]: 5V_STLK Power source

VIN (5V_VIN) is the 7 to 12 V DC power from the ARDUINO[®]-included Zio connector (CN8) pin 15 named VIN on the connector silkscreen, or from the ST morpho connector (CN11) pin 24. In this case, the JP6 jumper must be on pin [3-4] to select the 5V_VIN power source on the JP6 silkscreen. In that case, the DC power comes from the power supply through the ARDUINO[®] Uno V3 battery shield (compatible with Adafruit PowerBoost 500 shield).

UM2581 - Rev 5 page 16/49

5V_VIN configuration: Jumper JP6 [3-4] must be connected as shown in Figure 11.

3 8 8 19 ees sesi 100000 0 Š Ď Ď 2 ii N PWR connector (JP6 [3-4]) # F F G 0 0 0.0 0 0 Vin 7 to 12 V . 0 0 0 0 (CN8 pin 15) 0,0 0 0 (CN11 pin 24) 0 0 STM32 0 0 2 8 Microcontroller 12 ¢9 42 п 0 0 0 0 OOM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H 0000 0 0 olo 0 0 • 8 🔀 8 080 8 8 8 8 8 8 Ş ΔΔ

Figure 11. JP6 [3-4]: 5V_VIN Power source

5V_EXT is the DC power coming from external (5V DC power from ST morpho connector (CN11) pin 6). In this case, the JP6 jumper must be on pin [5-6] to select the 5V_EXT power source on the JP6 silkscreen.

UM2581 - Rev 5 page 17/49

5V_EXT configuration: Jumper JP6 [5-6] must be connected as shown in Figure 12.

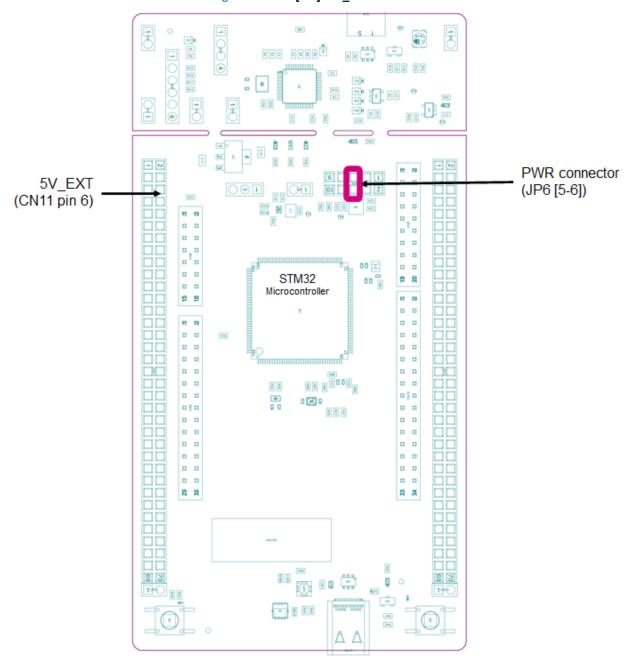


Figure 12. JP6 [5-6]: 5V_EXT Power source

5V_USB_C is the DC power supply connected to the user USB Type-C[®] (CN15). In this case, the jumper must be on pins [7-8] to select the 5V_USB_TYPE_C power source on the JP6 silkscreen.

UM2581 - Rev 5 page 18/49

5V_USB_C configuration: Jumper JP6 [7-8] must be connected as shown in Figure 13.

(881) 9 8 9 ees sess (A) 9 3 **1**2 **3**2 0 Š Ď Ď NO S 2 PWR connector (JP6 [7-8]) dian 0 0 E 2 € 6 tt (3 0_0 0 0 °¤ 0 0 0 0 0.0 0 0 0 0 0 0 0 0 2 8 STM32 0 0 Microcontroller 13 IS 0 0 0 0 0 0 0 0 Oth 0 0 0 0 0 0 0 0 0 0 88 8 0000 0 0 0 0 0 0 п§п 8 🔀 B 0 0 080 8 8 8 8 Ş - F E1 USB Type-C® (CN15)

Figure 13. JP6 [7-8]: 5V_USB_C Power source

5V_CHGR is the DC power charger connected to USB ST-LINK (CN1). To select the 5V_USB_CHARGER power source on the JP6 silkscreen, the jumper must be on pins [9-10]. In this case, if an external USB charger powers the Nucleo board, then the debug is not available. If a computer is connected instead of the charger, the current limitation is no more effective. In this case, the computer can be damaged and it is recommended to select 5V_STLK mode.

UM2581 - Rev 5 page 19/49

5V USB CHG configuration: Jumper JP6 [9-10] must be connected as shown in Figure 14.

USB ST-LINK 9 (CN1) DIK H 000 aro orraž g = 0 0 Ę 400 92 ð ™k og 8 0 Ď Ě Ď 0.8 a 12 2 5 12 CS PWR connector (JP6 [9-10]) Alm 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 🗉 0 0 STM32 0 0 2 2 Microcontroller 0 0 to to 0 0 E 0 0 0 0 0 00w 0 0 0 0 0 0 . 0 0 0 0 ## # 0000 0 0 0 0 0 0 □ § □ • 8 🔀 8 0 2 2 8 8 ĝ 8 8 Ş 100 im m ΔΔ

Figure 14. JP6 [9-10]: 5V_CHGR Power source

Note:

With this JP6 configuration (5V_CHGR), the USB_PWR protection is bypassed. Never use this configuration with a computer connected instead of the charger, because as the USB_PWR protection is bypassed, the board eventually requests more than 500 mA and this can damage the computer.

Caution:

A solder bridge (SB1) can be used to bypass the USB PWR protection switch. (<u>This is not an ST recommended setting</u>). SB1 can be set only in the case when the PC USB powers the board and maximum current consumption on 5V_STLINK <u>does not exceed 100 mA</u> (including an eventual extension board or ARDUINO[®] shield). In such a condition, USB enumeration always succeeds, since no more than 100 mA is requested from the PC. Possible configurations of SB1 are summarized in Table 8.

UM2581 - Rev 5 page 20/49

SB	Default position	Power supply	Limitation
	OFF	USB PWR through	500 mA limited by Power switch
SB1	ON	CN1	100 mA
301	OFF	VIN EV EVE DIVID	No current limitation
	ON	VIN or 5V_EXT PWR	Forbidden configuration (1)

Table 8. USB Power protection bypass (SB1)

1. SB1 must be removed when the board is powered by 5V EXT (CN11 pin 6) or by VIN (CN8 pin 15 or CN11 pin 24).

Warning:

In case maximum current consumption of the Nucleo and its extension boards exceeds 500 mA, it is recommended to power the Nucleo using an external power supply connected to 5V EXT or VIN.

External 3V3 power supply input. In certain situations, it is interesting to use the 3V3 (CN8 pin 7, CN11 pin 16, or JP5 pin 2) directly as power input, for instance in case the 3V3 is provided by an extension board. When Nucleo is powered by 3V3, the ST-LINK is not powered thus programming and debug features are unavailable.

Two different configurations are possible to use 3V3 to power the board:

- · When ST-LINK is removed (PCB cut)
- When 3V3 is provided from a shield, on CN8 pin 7, or CN11 pin 16. In this case, it is recommended to removed SB3 (U6 3V3 regulator output protection) to not inject voltage at the output of U6

With external 3V3 ST-LINK part is not supplied, so JP3 (T NRST) must be removed.

6.4.2 Programing/debugging when the power supply is not from ST-LINK (5V_STLK)

VIN, 5V_EXT, or 5V_USB_TYPE_C can be used as an external power supply, in case the current consumption of Nucleo and expansion boards exceeds the allowed current on USB. In such a condition, it is still possible to use USB for communication for programming or debugging only.

In this case, it is mandatory to power the board first using VIN, 5V_EXT or 5V_USB_TYPE_C then connect the USB cable to the PC. Proceeding this way the enumeration succeeds, thanks to the external power source.

The following power sequence procedure must be respected:

- 1. Connect the JP6 jumper according to the 5V selected external power source.
- 2. Make sure that SB1 is removed.
- 3. Connect the external power source according to JP6.
- 4. Power ON the external power supply.
- 5. Check that the 5V green LED (LD6) is turned ON.
- Connect the PC to the USB connector (CN1).

If this sequence is not respected, the board may be powered by V_{BUS} first from ST-LINK, and the following risk may be encountered:

- If more than 500 mA current is needed by the board, the PC may be damaged or the current can be limited by the PC. Therefore, the board is not powered correctly.
- 500 mA is requested at enumeration (since SB1 must be OFF) so there is a risk that the request is rejected and enumeration does not succeed if PC cannot provide such current. Consequently, the board is not powered and the green LED (LD6) remains OFF.

6.4.3 External power supply output

- 5V: When the Nucleo board is powered by USB, VIN, or 5V_EXT, this 5V, present on CN8 pin 9 or CN11 pin 18, can be used as an output power supply for an ARDUINO[®] shield or an extension board. In this case, the maximum current of the power source specified in Table 7 above needs to be respected.
- 3V3: The internal 3V3, on CN8 pin 7 or CN11 pin 16, can be used also as a power supply output. The current is limited by the maximum current capability of the regulator LDO (U6), 500 mA max concerning Nucleo board consumption and shield consumption.

UM2581 - Rev 5 page 21/49

6.4.4 Internal power supply

NUCLEO boards are designed to support two specific voltage configurations:

- 3V3 MCU configuration to reach NUCLEO low-power mode
- 1V8 MCU configuration to demonstrate MCU low-voltage capability

6.4.4.1 3V3

Regardless of the 5V power source, an LDO is used to switch from 5V to the default power source of the VDD_MCU: 3V3. The maximum current capability of this source is 500 mA. To select the 3V3 voltage for the VDD_MCU, set the jumper JP4[1-2].

6.4.4.2 1V8

An external SMPS is used for the MCU to work at 1V8. This helps to reduce max power consumption. The external SMPS capability is 400 mA. This power supply must be reserved only for the VDD_MCU. To select the 1V8 voltage for the VDD_MCU, connect the Jumper JP4 to pin [2-3].

6.4.4.3 Internal V_{core} SMPS Power supply

Power figures in Run Mode are significantly improved, by generating V_{core} logic supply from the internal DC/DC converter (this function is only available on '-Q' suffixed boards).

For all general information concerning Design recommendations for STM32L5 with INTERNAL SMPS, and design guide for ultra-low-power applications with performance, refer to L5 Hardware Getting started (AN5211) at the www.st.com website.

6.5 LEDs

User LD1

A green user LED is connected to the STM32 I/O PA5 (SB120 ON and SB118 OFF, optional configuration corresponding to the ST Zio D13) or PC7 (SB120 OFF and SB118 ON, default configuration). A transistor is used to drive the LED when the I/O voltage is 1V8.

User LD2

A blue user LED is connected to PB7. A transistor is used to drive the LED when the I/O voltage is 1V8.

User LD3

A red user LED is connected to PA9. A transistor is used to drive the LED when the I/O voltage is 1V8. These user LEDs are ON when the I/O is HIGH value, and are OFF when the I/O is LOW.

COM LD4

The tricolor (Green, orange, and red) LED (LD4) provides information about ST-LINK communication status. The LD4 default color is red. LD4 turns to green to indicate that the communication is in progress between the PC and the ST-LINK/V2-1, with the following setup:

- Slow blinking red/off: at power-on before USB initialization
- Fast blinking red/off: after the first correct communication between PC and ST-LINK/V2-1 (enumeration)
- Red LED ON: when the initialization between the PC and ST-LINK/V2-1 is complete
- Green LED ON: after a successful target communication initialization
- Blinking red/green: during communication with the target
- · Green ON: communication finished and successful
- Orange ON: communication failure

LD5 ST-LINK USB power switch fault

LD5 indicates that the board power consumption on USB exceeds 500 mA. Consequently, the user must power the board with an external power supply.

UM2581 - Rev 5 page 22/49

LD6 PWR

The green LED indicates that the STM32 part is powered by a 5V source, and this source is available on CN8 pin 9 and CN11 pin 18.

LD7 USB Type-C®

This green LED is driven by the presence of the 5V_USB_TYPEC. Refer to Section 6.13.1 USB FS device for more details.

6.6 Push-buttons

Two buttons are available on the Nucleo board.

B1 USER

The blue button for the User and Wake-Up function is connected to the I/O PC13 supported TAMPER function (default) or to I/O PA0 supported Wakeup function (optional) of the STM32 Microcontroller. When the button is pressed the logic state is "1", otherwise the logic state is "0".

B2 RESET

The black button connected to NRST is used to reset the STM32 microcontroller. When the button is pressed the logic state is "0", otherwise the logic state is "1".

The blue and black plastic hats placed on these push-buttons can be removed if necessary when a shield or an application board is plugged on top of Nucleo. This avoids pressure on the buttons and consequently a possible permanent target MCU reset.

6.7 IDD measurement

The JP5 jumper, labeled **IDD**, allows the consumption of the STM32 microcontroller to be measured by removing the jumper and connecting an ammeter.

- Jumper ON: STM32 Microcontroller is powered (default).
- Jumper OFF: an ammeter or an external 3V3 power source must be connected to power and to measure the STM32 microcontroller's consumption.

The IDD jumper only performs the current measurement for 3V3 voltage. To measure the STM32 microcontroller consumption in 3V3 and 1V8 modes, it is preferable to use the JP4 jumper as IDD.

6.8 JP4 VDD_MCU voltage selection 1V8 or 3V3

The JP4 jumper selects the VDD_MCU voltage. It can be used as an IDD current measurement point for 3V3 and 1V8 voltages.

- Set JP4 to [1-2] to set VDD_MCU to 3V3 (IDD can be measured by ammeter between pin 1 and 2)
- Set JP4 to [2-3] to set VDD_MCU to 1V8 (IDD can be measured by ammeter between pin 3 and 2)

Consumption on this jumper includes the MCU pin connected to VDD and the level shifter (U100) supply pin for 1V8 compatibility. Level shifter consumption is negligible according to correct SWD settings and according to the correct setting of the I/O, to avoid an I/O floating level.

To correctly supply the MCU, it is mandatory to configure SBs as shown in Table 9. The role of these SBs is to provide input to dedicated MCU part for current measurement and probing purposes.

Table 9. MCU Power supplies

SB configuration	MCU Power supply
JP4 [1-2] / JP4 [2-3]	Jumper selection for VDD_MCU 3V3 or 1V8
SB4 ON	SB for VDDSMPS input voltage
SB5 ON	SB for VREFP input voltage
SB132 ON	SB for VDD_USB input voltage

UM2581 - Rev 5 page 23/49

SB configuration	MCU Power supply
SB133 ON	SB for VDDIO2 PG [2-15] input voltage
SB146 ON	SB for VBAT input voltage
SB149 OFF / SB150 ON	SB for VDDA input voltage
-	For more detail about VDDA/VREFP power supply, refer to the MCU datasheet

Warning:

The power sequence is not respected when using 1V8 VDD. Refer to the Getting started with STM32L5 Series hardware development application note AN5211, and STM32L5xx products datasheets for power sequencing.

6.9 OSC clock sources

Three clock sources are described below.

- LSE is the 32.768 kHz crystal for the STM32 embedded RTC.
- MCO is the 8 MHz clock from ST-LINK MCU for the STM32 microcontroller.
- HSE is the 16 MHz oscillator for the STM32 microcontroller. This clock is not implemented in a basic configuration.

6.9.1 LSE: OSC 32 KHz clock supply

There are three ways to configure the pins corresponding to the low-speed clock (LSE):

LSE on-board oscillator X2 crystal (Default configuration)

Refer to the AN2867 for oscillator design guide for STM32 microcontrollers, with the following characteristics: 32.768 kHz, 6 pF, 20 ppm. It is recommended to use NX2012SA- 32.768KHZ-EXS00A-MU00527 manufactured by NDK. The following configuration is needed:

- R34 and R35 ON
- SB147 and SB148 OFF

Oscillator from external to PC14 input

From the external oscillator through the CN11 pin 25. The following configuration is needed:

- R34 and R35 OFF
- SB147 and SB148 ON

LSE not used

PC14 and PC15 are used as GPIOs instead of low-speed clocks. The following configuration is needed:

- R34 and R35 OFF
- SB147 and SB148 ON

6.9.2 OSC clock supply

There are four ways to configure the pins corresponding to the external high-speed clock (HSE):

HSE: on-board oscillator X3 crystal (Default: not connected)

For typical frequencies, capacitors, and resistors, refer to the STM32 microcontroller datasheet. Refer to the AN2867 for oscillator design guide for STM32 microcontrollers. The X3 crystal has the following characteristics: 16 MHz, 8 pF, 20 ppm. It is recommended to use NX2016SA_16MHz_EXS00A-CS07826 manufactured by NDK. The following configuration is needed:

- SB142 and SB145 OFF (PH0/PH1 not connected to CN11 as I/O)
- SB143 (MCO) OFF
- SB6 and SB7 ON (connected to external HSE)

UM2581 - Rev 5 page 24/49

MCO from ST-LINK (Default: not connected):

MCO, the output of ST-LINK MCU, is used as an input clock. This frequency cannot be changed. It is fixed at 8 MHz, and connected to PH0 OSC_IN of STM32 microcontroller. The following configuration is needed:

- SB142 OFF and SB145 ON (Only PH1 connected to CN11 as I/O)
- SB143 ON (MCO connected to PH0)
- SB6 and SB7 OFF (not connected to external HSE)

External oscillator to PH0 input (Default: not connected)

The input clock comes from an external oscillator through the CN11 pin 29. The following configuration is needed:

- SB142 ON and SB145 ON (PH0/PH1 connected to CN11)
- SB143 OFF: MCO not connected to PH0
- SB6 and SB7 OFF (not connected to external HSE)

HSE not used (Default configuration)

PH0 and PH1 are used as GPIOs instead of clocks. The following configuration is needed:

- SB142 and SB145 ON (PH0/PH1 connected to CN11 as I/O)
- SB143 OFF: MCO not connected to PH0
- SB6 and SB7 OFF (External HSE)

6.10 Reset sources

The reset signal of the Nucleo board is active LOW and the reset sources include:

- The RESET button B2
- The embedded ST-LINK/V2-1
- The ARDUINO[®]-included Zio connector (CN8) pin 5
- The ST morpho connector (CN11) pin 14

6.11 RSS/bootloader

The bootloader is located in the system memory, programmed by ST during production. It is used to reprogram the flash memory via USART, I²C, SPI, CAN FD, or USB FS in device mode through the DFU (device firmware upgrade). The bootloader is available on all devices. Refer to the *STM32 microcontroller system memory boot mode* application note AN2606 for more details.

The Root Secure Services (RSS) are embedded in a flash area named secure information block, programmed during ST production. For example, it enables Secure Firmware Installation (SFI), thanks to the RSS extension firmware (RSSe SFI). This feature allows customers to protect the confidentiality of the FW to be provisioned into the STM32 when production is sub-contracted to an untrusted third party. The RSS is available on all devices, after enabling the TrustZone® through the TZEN option bit.

The bootloader version can be identified by reading the bootloader ID at the address 0x0BF97FFE.

6.11.1 Limitation

The STM32L5 part soldered on NUCLEO-L552ZE-Q with the Finish Good (FG) NUL552ZEQ\$AU1 (sticker available on the top side of the board) embeds bootloader V9.0 affected by the limitations to be worked around, as described hereunder.

The bootloader ID of the bootloader V9.0 is 0x90.

The following limitations exist in the bootloader V9.0:

Option Byte programming in RDP level 0.5

Issue: The user cannot program non-secure option bytes in RDP level 0.5 through the bootloader.

Workaround: The user can program option bytes, thanks to STM32CubeProgrammer GUI or command-line interfaces through JTAG. To know how to program option bytes through STM32CubeProgrammer, refer to *STM32CubeProgrammer* user manual (UM2237).

UM2581 - Rev 5 page 25/49

Impossible to set the TZEN option bit

Issue: The user cannot set the TZEN option bit through Bootloader interfaces.

Workaround: Instead of the bootloader interface, the user can use JTAG to set the TZEN option bit.

Go command on USB-DFU interface

Issue: The user cannot use the Go command through the bootloader on the USB-DFU interface.

Workaround: Instead of the USB-DFU interface, the user can use JTAG or any other communication ports supported by Bootloader to run the Go command, like USART, I²C, SPI, or CAN FD.

Caution:

Only SFI through JTAG is fully supported on bootloader V9.0. SFI through bootloader interfaces is partially supported because some option bytes cannot be managed by the bootloader and they must be set through JTAG.

6.11.2 Boot from RSS

On the NUCLEO-L552ZE-Q, PH3-BOOT0 is fixed to a LOW level allowing the boot from the memory address defined by the SECBOOTADD0 option byte. To change the boot from RSS, it is necessary to set PH3-BOOT0 to the HIGH level just by applying 3V3 on the PH3-BOOT0 signal. The easiest solution is to make a direct connection between CN11 pin 5 (VDD) and 7 (PH3 BOOT0).

6.12 Virtual COM port: LPUART or USART

An LPUART or a USART interface of the STM32 microcontroller on the NUCLEO board can be connected to ST-LINK/V2-1 MCU or on shields on ST morpho connectors and ARDUINO® Uno V3 connectors.

The selection between LPUART and USART is performed by setting related solder bridges.

Refer to Table 10 and Table 11 below for the UART or LPUART connection to VCP interfaces or ARDUINO® UART.

Table 10. LPUART1 connection

Solder bridge configuration ⁽¹⁾	Feature
SB127, SB129 ON	LPUART1 (PG7/PG8) connected to ST-LINK VCP.
SB124, SB126, SB128, SB130 OFF	Must be the interface for 1V8 MCU mode because PG [2-15] stay at 3V3 IO interface link to the VDDIO power supply.
SB128, SB130 ON SB123, SB125, SB127, SB129 OFF	LPUART1 (PG7/PG8) connected to Zio, ARDUINO® D0/D1

^{1.} The default configuration is in bold.

Table 11. USART3 connection

Solder bridge configuration ⁽¹⁾	Feature
SB124, SB126 ON	USART3 (PD8/PD9) connected to ST-LINK VCP
SB123, SB125, SB127, SB129 OFF	Only 3V3 mode supported
SB123, SB125 ON	HOADTO (DDO/DDO)
SB124, SB126, SB128, SB130 OFF	USART3 (PD8/PD9) connected to Zio, ARDUINO® D0/D1

By default:

- Communication between target MCU and ST-LINK MCU is enabled on LPUART1.
- Communication between target MCU, ARDUINO[®], and ST morpho connectors, is enabled on USART3, not
 to interfere with the VCP interface.

The Virtual COM port settings are 115200 bps, 8-bit data, no parity, 1 stop bit, and no flow control.

UM2581 - Rev 5 page 26/49

6.13 USB Type-C® FS

The STM32 Nucleo-144 board supports USB full-speed (FS) communication. The USB connector (CN15) is a USB Type-C® connector.

The STM32 Nucleo-144 board supports USB Type-C® SINK mode only.

A green LED (LD7) lights up when V_{BUS} is powered by a USB host and the NUCLEO-L552ZE-Q board works as a USB device.

6.13.1 USB FS device

When a USB host connection to the USB Type- C^{\circledR} connector (CN15) of STM32 Nucleo-144 is detected, the STM32 Nucleo-144 board starts behaving as a USB device. Depending on the powering capability of the USB host, the board can take power from the V_{BUS} terminal of CN15. In the board schematic diagrams, the corresponding power voltage line is called 5V_USB_C. The STM32 Nucleo-144 board supports USB voltage 5V: 4.75 V to 5.25 V. MCU VDD_USB supports the 3V3 voltage only. Section 6.4 provides information on how to use powering options. The hardware configuration for the USB FS interface is shown in Table 12.

Ю	HW	Setting	Configuration ⁽¹⁾
		OFF	PA11 used as USB_FS_N diff pair interface
		OFF	No other muxing
PA11	SB137		PA11 can be used as an I/O on the morpho connector.
		ON	USB function can be used, but performances are low due to the track length to the Zio connector: impedance mismatch.
		OFF	PA12 used as USB_FS_P diff pair interface No other muxing
PA12	SB138		PA12 can be used as an I/O on the morpho connector.
		ON	USB function can be used, but performances are low due to the track length to the Zio connector: impedance mismatch.

Table 12. HW configuration for the USB interface

6.13.2 UCPD

The USB Type- C^{\otimes} introduces the USB Power Delivery feature. The STM32 Nucleo-144 supports the dead battery and the SINK mode.

In addition to the I/O DP/DM directly connected to the USB Type-C® connector, 5 I/Os are also used for UCPD configuration: Configuration Channel (CCx), VBUS-SENSE, UCPD Dead Battery (DBn), and UCPD_FAULT (FLT) feature.

To protect the STM32 Nucleo-144 from USB over-voltage, a USB Type-C® port protection, PPS compliant, is used: TCPP01-M12 IC compliant with IEC6100-4-2 level 4.

- Configuration Channel I/O: UCPD_CCx: These signals are connected to the associated CCx line of the USB Type-C[®] connector through the STM USB port Protection TCPP01-M12. These lines are used for the configuration channel lines (CCx) to select the USB Type-C[®] current mode. The STM32 Nucleo-144 supports only SINK current mode.
- Dead Battery I/O: UCPD_DBn: This signal is connected to the associated DBn line of the TCPP01-M12. The STM USB port Protection TCPP01-M12 managed internally the Dead Battery resistors.
- V_{BUS} fault detection: UCPD_FLT: This signal is provided by the STM USB Type-C[®] port protection. It is used as fault reporting to MCU after a bad V_{BUS} level detection. By design, the STM32 Nucleo-144 V_{BUS} protection is set to 6 V max. (R45 is set to 2K7 to select 6 V maximum).

UM2581 - Rev 5 page 27/49

^{1.} The default configuration is shown in bold.

Table 13 describes the HW configuration for the UCPD feature.

Table 13. HW configuration for the UCPD feature

Ю	HW	Setting	Configuration ⁽¹⁾				
PA15		OFF	PA15 connected to the USB Type-C [®] port protection and used as UCPD_CC1				
FAIS	SB10	ON	PA15 directly connected to USB Type-C $^{\! @}$ connector. USB Type-C $^{\! @}$ port protection is bypassed.				
PB15	SB11	SB11	SB11	SB11	SB11	OFF	PB15 connected to the USB Type-C $^{\otimes}$ port protection and used as UCPD_CC2
PBIS						ODTI	33
		ON	PC2 used as VBUS_SENSE				
PC2	SB8	OFF	PC2 NOT used for UCPD				
		011	Can be used on the Zio connector				
PB5	-	-	IO UCPD_DBn connected to USB Type-C® port protection and used as a dead battery feature				
PB14	-	-	IO UCPD_FLT connected to USB Type-C $^{\! 8}$ port protection and used as over-voltage fault reporting to MCU				

^{1.} The default configuration is shown in bold

6.13.3 USB Type-C® connector

Figure 15 shows the pinout of the USB Type-C® connector CN15.

Figure 15. CN15 USB Type-C® connector pinout

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
GND	TX1+	TX1-	VBUS	CC1	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
GND	RX1+	RX1-	VBUS	SBU2	D-	D+	CC2	VBUS	TX2-	TX2+	GND
B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1

UM2581 - Rev 5 page 28/49

Table 14 describes the pinout of the USB Type-C® connector CN15.

Table 14. CN15 USB Type-C® connector pinout

STM32 pin	Signal name	Pin name	Pin	Pin	Pin name	Signal name	STM32 pin
-	GND	GND	A1	B12	GND	GND	-
-	-	TX1+	A2	B11	RX1+	-	-
-	-	TX1-	A3	B10	RX1-	-	-
-	VBUS_C/ 5V_USB_C	VBUS	A4	В9	VBUS	VBUS_C/ 5V_USB_C	-
A15	UCPD_CC1	CC1	A5	B8	SBU2	-	-
USB_DP2	USB_DP2	D+	A6	В7	D-	USB_DM2	USB_DM2
USB_DM2	USB_DM2	D-	A7	В6	D+	USB_DP2	USB_DP2
-	-	SBU1	A8	B5	CC2	UCPD_CC2	PB15
-	VBUS_C/ 5V_USB_C	VBUS	A9	B4	VBUS	VBUS_C/ 5V_USB_C	-
-	-	RX2-	A10	В3	TX2-	-	-
-	-	RX2+	A11	B2	TX2+	-	-
-	GND	GND	A12	B1	GND	GND	-

6.14 Jumper configuration

The jumper default positions are explained in Table 4 and shown in Figure 2. Table 15 explains the other jumper settings and configurations.

Table 15. Jumper configuration

Jumper / CN	Definition	Setting (1)	Comment
CN4	T_SWCLK	ON [1-2] ON [3-4]	ST-LINK/V2-1 enabled for on-board MCU debugger
5	T_SWDIO	OFF	ST-LINK/V2-1 functions enabled for external CN5 connector
JP2	STLK RST	ON [1-2]	use to reset ST-LINK MCU
JF2	SILK_KSI	OFF	Normal mode
		ON	ST-LINK able to reset target MCU
JP3	T_NRST	OFF	ST-LINK not able to reset target MCU configuration to use when CN5 is used with an external application
		ON [1-2]	VDD_MCU voltage selection = 3V3
JP4	VDD_MCU voltage selection	ON [2-3]	VDD_MCU voltage selection = 1V8
		OFF	No VDD_MCU power supply (forbidden)
		ON [1-2]	VDD =3V3
JP5	JP5 IDD measurement	OFF	LDO (U6) is not used. The external 3V3 source can be connected on pin 2 (ULPBench probe as an example)
		ON [1-2]	5V from ST-LINK
JP6	5V Power selection	ON [3-4]	5V from ARDUINO® VIN 7 to 12 V
		ON [5-6]	5V from 5V_EXT

UM2581 - Rev 5 page 29/49

Jumper / CN	Definition	Setting ⁽¹⁾	Comment
	5V Power selection	ON [7-8]	5V from user USB_UCPD (USB Type-C®)
JP6		ON [9-10]	5V from USB_CHGR
		OFF	No 5V Power source, configuration when external 3V3 is used
CN13 / CN14	GND	NA	GND probe

^{1.} Default jumper state in bold.

6.15 Solder bridge configuration

Table 16 details the solder bridges of the STM32L5 Nucleo-144 board.

Table 16. SB configuration

Definition	Bridge	Setting ⁽¹⁾⁽²⁾	Comment
ST-LINK USB Power	SB1	OFF	USB power switch protection is enabled.
bypass mode	361	ON	USB power switch is bypassed (Not recommended)
		OFF	3V3 for peripheral is not available (Not recommended)
3V3_PER	SB2	ON	Is used to provide 3V3 to some peripheral without impacting the IDD measurement.
3V3 LDO output	SB3	OFF	LDO (U7) output does not provide 3V3. An external 3V3 is needed. LDO protection is active when external 3V3 is used.
·		ON	LDO (U7) output provides 3V3.
MCHADDEMDE	SB4	OFF	VDDSMPS input is not supplied (Not recommended).
MCU VDDSMPS	3B4	ON	VDDSMPS input is connected to VDD_MCU.
	SB5	OFF	VREFP input is not supplied (Not recommended).
MOUL V/DEED	303	ON	VREFP input is connected to VDDA.
MCU_VREFP	SB115 -	OFF	VREFP is not connected to Zio, ARDUINO® pin 6.
		ON	VREFP is connected to Zio, ARDUINO® pin 6.
	000/007	OFF/OFF	HSE is NOT provided by External HSE CLK X3.
	SB6/SB7	ON/ON	HSE is provided by External HSE CLK X3.
	SB143	OFF	ST-LINK MCO is NOT used for HSE CLK.
	30143	ON	ST-LINK MCO is used for HSE CLK.
HSE CLK selection	SB142	OFF	PH0 NOT is connected to the ST morpho connector for MCO usage.
		ON	PH0 is connected to the ST morpho connector.
	SB145	OFF	PH1 is NOT connected to the ST morpho connector.
	30143	ON	PH1 is connected to the ST morpho connector for I/O usage.
	SB8	OFF	PC2 is not connected to USB Type-C® VBUS_SENSE used as ADC_A7 on the Zio connector.
USB		ON	PC2 is connected to USB Type-C® VBUS_SENSE
	SB144	OFF	PC2 is not connected to ADC_A7 on the Zio connector used as USB Type-C® VBUS_SENSE.
		ON	PC2 is connected to ADC_A7 on the Zio connector.
	SB10	OFF	PA15 is connected to <i>STM USB Type-C</i> ® port protection and used as CC1.

UM2581 - Rev 5 page 30/49

Definition	Bridge	Setting ⁽¹⁾⁽²⁾	Comment
	SB10	ON	USB Type-C® port protection is bypassed (Not recommended and only for debug).
		OFF	PB15 is connected to STM USB Type-C® port protection and used as CC2.
	SB11	ON	USB Type-C® port protection is bypassed (Not recommended and only for debug).
USB		OFF/OFF	PA11/PA12 are used as USB_FS_P/N interface.
	SB137/SB138	ON/ON	PA11/PA12 are used as I/Os connected to the ST morpho connector (CN12).
	CD425	OFF	PB5 is not connected to Zio (CN7) for SPI_B interface: Reserved for UCPD_DBn.
	SB135	ON	PB5 is connected to Zio (CN7) for SPI_B interface cannot be used for UCPB_DBn.
AGND	SB9	ON	AGND is connected to GND. Reserved. Do not modify.
SWD interface (Reserved)	SB100/SB102/ SB104/SN106	OFF	Reserved, do not modify.
SWD interface (Default)	SB101/SB103/ SB105/SB107	ON	Reserved, do not modify.
	SB108	OFF	SWO is connected through the level shifter to target MCU I/O 1V8 compatibility.
SWO	36100	ON	SWO is not connected through the level shifter. Debug mode is only compatible with MCU I/O 3V3.
	SB140	OFF	PB3 is used as I/O on Zio and ST morpho connectors.
		ON	PB3, used as SWO_MCU, is connected between STLINK and target MCU.
	SB109	OFF	The level shifter is not connected to VDD_MCU.
Lovel abitton		ON	The level shifter is connected to VDD_MCU (SB110 must be disconnected).
Level shifter		OFF	The level shifter is not connected to 3V3_PER.
	SB110	ON	The level shifter is connected to 3V3_PER (SB109 must be disconnected).
	00444	OFF	IOREF is NOT connected to the 3V3_PER power supply.
	SB111	ON	IOREF is connected to the 3V3_PER power supply.
IODEE coloction	CD440	OFF	IOREF is NOT connected to the VDD_MCU power supply.
IOREF selection	SB112	ON	IOREF is connected to the VDD_MCU power supply.
	CD442	OFF	IOREF is NOT connected to a 3V3 power supply.
	SB113	ON	IOREF is connected to a 3V3 power supply.
CMDC 41/0 never innet	CD444	ON	SMPS 1V8 U7/U101 are powered by 5V.
SMPS 1V8 power input	SB114	OFF	SMPS 1V8 U7/U101 are NOT powered.
	CD440	OFF	Green user LED is not driven by PC7.
Hazal ED ODEEN	SB118	ON	Green user LED is driven by PC7.
User LED GREEN	CD400	OFF	Green user LED is not driven by PA5.
	SB120	ON	Green user LED is driven by PA5 with ARD_D13.
0011110111	SB119	OFF	PC8 is not connected to ST morpho (CN12) pin 2 to avoid stub on Zio (CN8) SDMMC_D0.
SDMMC I/O	30118	ON	PC8 is connected to ST morpho (CN12) pin 2 and Zio (CN8) pin 2.

UM2581 - Rev 5 page 31/49

Definition	Bridge	Setting ⁽¹⁾⁽²⁾	Comment
SDMMC I/O	00.400	OFF	PC9 is not connected to ST morpho (CN12) pin 1 to avoid stub on Zio (CN8) SDMMC_D1.
SDIVINIC I/O	SB122	ON	PC9 is connected to ST morpho (CN12) pin 1 and Zio (CN8) pin 4.
	CD404	OFF	PA4 is not connected to Zio (CN7) for the SAI_D interface.
	SB121	ON	PA4 is connected to Zio (CN7) for the SAI_D interface.
	CD126	OFF	PA4 is not connected to Zio (CN7) for the SPI_B interface.
	SB136	ON	PA4 is connected to Zio (CN7) for the SPI_B interface.
	SB134	OFF	PB4 is not connected to Zio (CN7) for the SAI_D interface.
Zio SAI_D / SPI_B interface	30134	ON	PB4 is connected to Zio (CN7) for the SAI_D interface.
interiace	SB139	OFF	PB4 is not connected to Zio (CN7) for the SPI_B interface.
	OD 100	ON	PB4 is connected to Zio (CN7) for the SPI_B interface.
	SB135	OFF	PB5 is not connected to Zio (CN7) for the SPI_B interface. Reserved for UCPD_DB1.
	36133	ON	PB5 is connected to Zio (CN7) for the SPI_B interface, shared with for UCPB_DB1.
	SB123 08 USART3_TX SB124	OFF	PD8 USART3_TX is not connected to ARDUINO® D1 TX.
DD8116VDT3 TV		ON	PD8 USART3_TX is connected to ARDUINO® D1 TX.
PD0 03AR13_1X		OFF	PD8 USART3_TX is not connected to STLK VCP TX.
		ON	PD8 USART3_TX is connected to STLK VCP TX.
	SB125	OFF	PD9 USART3_RX is not connected to ARDUINO® D0 RX.
DD0 H0ADT0 DV		ON	PD9 USART3_RX is connected to ARDUINO® D0 RX.
PD9 USART3_RX		OFF	PD9 USART3_RX is not connected to STLK VCP RX.
	SB126	ON	PD9 USART3_RX is connected to STLK VCP RX.
		OFF	PG7 LPUART1_TX is not connected to STLK VCP TX.
	SB127	ON	PG7 LPUART1_TX is connected to STLK VCP TX. Configuration to support debug with 1V8 mode.
		OFF	PG7 LPUART1 TX is not connected to ARDUINO® D1 TX.
PG7 LPUART1_TX	SB128	ON	PG7 LPUART1 TX is connected to ARDUINO® D1 TX.
		OFF	PG7 LPUART1_TX is not connected to the ST morpho connector (CN12).
	SB168	ON	PG7 LPUART1_TX is connected to the ST morpho connector (CN12).
		OFF	PG8 LPUART1 RX is not connected to STLK VCP RX.
	SB129	011	PG8 LPUART1 RX is connected to STLK VCP RX.
PG8 LPUART1_RX		ON	Configuration to support debug with 1V8 mode.
	SB130	OFF	PG8 LPUART1_RX is not connected to ARDUINO® D0 RX.
	00100	ON	PG8 LPUART1_RX is connected to ARDUINO® D0 RX.
	00407	OFF	PG8 LPUART1_RX is not connected to the ST morpho connector (CN12).
	SB167	ON	PG8 LPUART1_RX is connected to the ST morpho connector (CN12).
MCU VDD_USB	SB132	OFF	VDD_USB input is not supplied.
MICO ADD_09B	30132	ON	VDD_USB input is connected to VDD.

UM2581 - Rev 5 page 32/49

Definition	Bridge	Setting ⁽¹⁾⁽²⁾	Comment
MOLLYPPIO	00400	OFF	VDDIO input is not supplied (no PG [2-15] I/O).
MCU VDDIO	SB133	ON	VDDIO input is connected to VDD.
MOLLYDD HOD	00440	OFF	VBAT input is not supplied.
MCU VDD_USB	SB146	ON	VBAT input is connected to VDD_MCU 3V3 or 1V8.
LSE CLK selection	SB147/SB148	OFF	LSE is provided by External LSE CLK X2 (R34/R35) PC14 and PC15 is not connected to the ST morpho connector.
LSE CLK Selection	36147/36140	ON	PC14 and PC15 are connected to the ST morpho connector, LSE is NOT provided by external LSE CLK X2.
	SB149	OFF	VDDA input is not supplied by VDD.
	36149	ON	VDDA input is connected to VDD (SB150 must be not connected
MCU VDDA		OFF	VDDA input is not supplied by VDD_MCU.
	SB150	ON	VDDA input is connected to VDD_MCU (SBN149 must be not connected).
	SB151	OFF	PB10 is not used as OCTOSPI_CLK.
PB10 I/O selection	35131	ON	PB10 is used as OCTOSPI_CLK.
FB10 I/O selection	SB157	OFF	PB10 is not used as the TIMER for motor control.
	35137	ON	PB10 is used as the TIMER for motor control.
	SB152	OFF	PA2 is not used as OCTOSPI_CS.
D40.1/0	36132	ON	PA2 is used as OCTOSPI_CS.
PA2 I/O	SB153	OFF	PA2 is not used as ARDUINO® A1 ADC.
		ON	PA2 is used as ARDUINO® A1 ADC.
		OFF	USER button is NOT connected to PC13.
	SB154	ON	USER button is connected to PC13.
USER button	00/	OFF	USER button is NOT connected to PA0.
	SB155	ON	USER button is connected to PA0.
DAG	00450	OFF	PA0 is not used as the TIMER for motor control, reserved for USER button.
PA0	SB156	ON	PA0 can be used as the TIMER for motor control and cannot be used as a USER button.
	SB158	OFF	PE15 is not used as OCTOSPI_IO3.
PE15 I/O selection	35136	ON	PE15 is used as OCTOSPI_IO3.
PE 15 I/O Selection	CD450	OFF	PE15 is not used as the TIMER for motor control.
	SB159	ON	PE15 is used as the TIMER for motor control.
	CD400	OFF	PB0 is not used as OCTOSPI_IO1.
	SB160	ON	PB0 is used as OCTOSPI_IO1.
PB0 I/O selection	00404	OFF	PB0 is not used as ARDUINO® A3 ADC.
	SB161	ON	PB0 is used as ARDUINO® A3 ADC.
	SB162	OFF	PB0 is not connected to the ST morpho (CN11) pin to avoid stub on ARDUINO [®] ADC A3.
		ON	PB0 is connected to the ST morpho (CN11).
	00.405	OFF	PE12 is not used as OCTOSPI_IO0.
PE12 I/O selection	SB163	ON	PE12 is used as OCTOSPI_IO0.
	SB164	OFF	PE12 is not used as the TIMER for motor control.

UM2581 - Rev 5 page 33/49

Definition	Bridge	Setting ⁽¹⁾⁽²⁾	Comment		
PE12 I/O selection	SB164	ON	PE12 is used as the TIMER for motor control.		
	PE14 I/O selection			OFF	PE14 is not used as OCTOSPI_IO2.
DE14 I/O soloction		ON	PE14 is used as OCTOSPI_IO2.		
PE 14 I/O Selection		OFF	PE14 is not used as the TIMER for motor control.		
		ON	PE14 is used as the TIMER for motor control.		

- 1. Default SBx state is shown in bold.
- 2. All NUCLEO products are delivered with solder bridges configured according to the target MCU supported.

Note: The OCTOSPI interface is used in quad mode communication without DQS to support Quad-SPI memories.

UM2581 - Rev 5 page 34/49

7 Extension connectors

Six extension connectors are implemented on the STM32L5 Nucleo-144 board:

- CN7, CN8, CN9, and CN10 for Zio connector supporting ARDUINO[®] Uno V3
- CN11 and CN12 for ST morpho connector

The jumpers for voltage selection and IDD measurements are not described here.

7.1 Zio connectors supporting ARDUINO® Uno V3

The Zio connectors (CN7, CN8, CN9, and CN10) are female connectors supporting the ARDUINO[®] standard. Most shields designed for ARDUINO[®] can fit the Nucleo board.

Caution: The STM32 microcontroller I/Os are 3V3 compatible, while ARDUINO® Uno V3 is 5V compatible.

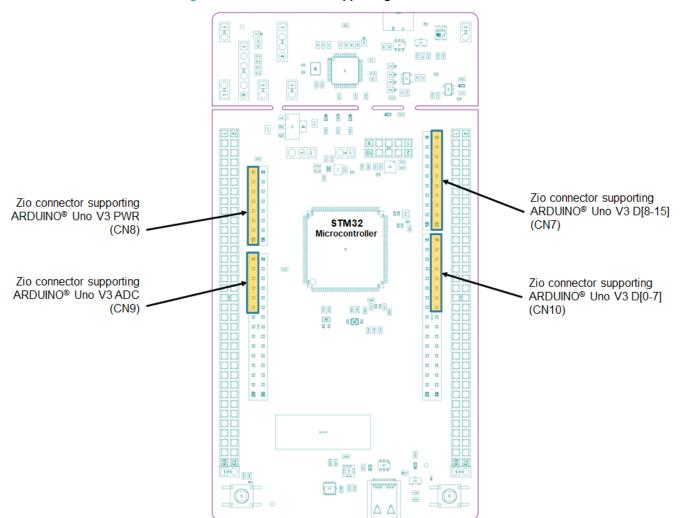


Figure 16. Zio connectors supporting ARDUINO® Uno V3

The related pinouts for the ARDUINO® connector are listed in Table 17, Table 18, Table 19, and Table 20

UM2581 - Rev 5 page 35/49

Table 17. Pinout of ARDUINO®-included Zio connector (CN7)

Pin	Pin name	Signal name	STM32 pin	MCU function	Pin	Pin name	Signal name	STM32 pin	MCU function
1	D16	SAI_C_MCLK	PC6	SAI2_A	2	D15	I2C_A_SCL	PB8	I2C1
3	D17	SAI_C_SD	PD11	SAI2_A	4	D14	I2C_A_SDA	PB9	I2C1
5	D18	SAI_C_SCK	PB13	SAI2_A	6	VREFP	-	-	-
7	D19	SAI_C_FS	PD12	SAI2_A	8	GND	-	-	-
9	D20	SAI_D_FS	PA4	SAI1_B/SPI3	10	D13	SPI_A_SCK	PA5	SPI1
11	D21	SAI_D_MCLK	PB4	SAI1_B/SPI3	12	D12	SPI_A_MISO	PA6	SPI1
13	D22	SAI_D_SD/ SPI_B_MOSI	PB5	SAI1_B/SPI3	14	D11	SPI_A_MOSI / TIM_E_PWM1	PA7	SPI1
15	D23	SAI_D_SCK/ SPI_B_SCK	PB3	SAI1_B/SPI3	16	D10	SPI_A_CS / TIM_B_PWM3	PD14	SPI1/ TIM4_CH3
17	D24	SPI_B_NSS	PA4	SAI1/SPI3	18	D9	TIM_B_PWM2	PD15	TIM4_CH4
19	D25	SPI_B_MISO	PB4	SAI1/SPI3	20	D8	Ю	PF12	-

Table 18. Pinout of ARDUINO®-included Zio connector (CN8)

Pin	Pin name	Signal name	STM32 pin	ARD function	Pin	Pin name	Signal name	STM32 pin	MCU function
1	NC	NC	-	ARD RES	2	D43	SDMMC_D0	PC8	SDMMC1
3	IOREF	IOREF	-	ARD IOREF	4	D44	SDMMC_D1	PC9	SDMMC1
5	NRST	NRST	NRST	ARD RESET	6	D45	SDMMC_D2	PC10	SDMMC1
7	3V3	3V3	-	ARD 3V3 I/O	8	D46	SDMMC_D3	PC11	SDMMC1
9	5V	5V	-	ARD 5V Output	10	D47	SDMMC_CK	PC12	SDMMC1
11	GND	GND	-	ARD GND	12	D48	SDMMC_CMD	PD2	SDMMC1
13	GND	GND	-	ARD GND	14	D49	I/O	PF3	-
15	VIN	VIN	-	ARD VIN	16	D50	I/O	PF5	-

Table 19. Pinout of ARDUINO®-included Zio connector (CN9)

Pin	Pin names	Signal name	STM32 pin	MCU function	Pin	Pin names	Signal name	STM32 pin	MCU function
1	A0	ADC	PA3	ADC12_IN8	2	D51	USART_B_SCL K	PD7	USART2
3	A1	ADC	PA2	ADC12_IN7	4	D52	USART_B_RX	PD6	USART2
5	A2	ADC	PC3	ADC12_IN4	6	D53	USART_B_TX	PD5	USART2
7	A3	ADC	PB0	ADC12_IN15	8	D54	USART_B_RTS	PD4	USART2
9	A4	ADC	PC1	ADC12_IN2	10	D55	USART_B_CTS	PD3	USART2
11	A5	ADC	PC0	ADC12_IN1	12	GND	-	-	-
13	D72	COMP1_INP	PB2	COMP1	14	D56	SAI_A_MCLK	PE2	SAI1_A
15	D71	COMP2_INP	PB6	COMP2	16	D57	SAI_A_FS	PE4	SAI1_A
17	D70	I2C_B_SMBA	PF2	I2C2	18	D58	SAI_A_SCK	PE5	SAI1_A
19	D69	I2C_B_SCL	PF1	I2C2	20	D59	SAI_A_SD	PE6	SAI1_A
21	D68	I2C_B_SDA	PF0	I2C2	22	D60	SAI_B_SD	PE3	SAI1_B
23	GND	-	-	-	24	D61	SAI_B_SCK	PF8	SAI1_B

UM2581 - Rev 5 page 36/49

Pin	Pin names	Signal name	STM32 pin	MCU function	Pin	Pin names	Signal name	STM32 pin	MCU function
25	D67	CAN_RX	PD0	CAN1	26	D62	SAI_B_MCLK	PF7	SAI1_B
27	D66	CAN_TX	PD1	CAN1	28	D63	SAI_B_FS	PF9	SAI1_B
29	D65	I/O	PG0	-	30	D64	I/O	PG1	-

Table 20. Pinout of ARDUINO®-included Zio connector (CN10)

Pin	Pin names	Signal name	STM32 pin	MCU function	Pin	Pin names	Signal name	STM32 pin	MCU function
1	AVDD	-	-	AVDD	2	D7	I/O	PF13	I/O
3	AGND	-	-	AGND	4	D6	TIM_A_PWM1	PE9	TIM1_CH1
5	GND	-	-	GND	6	D5	TIM_A_PWM2	PE11	TIM1_CH2
7	A6	ADC_A_IN	PB1	ADC12_IN16	8	D4	I/O	PF14	I/O
9	A7	ADC_B_IN	PC2	ADC12_IN3	10	D3	TIM_A_PWM3	PE13	TIM1_CH3
11	A8	ADC_C_IN	PA1	ADC12_IN6	12	D2	I/O	PF15	I/O
13	D26	OCTOSPI_CS	PA2	OCTOSPI	14	D1	USART_A_TX	PD8	USART3
15	D27	OCTOSPI_CLK	PB10	OCTOSPI	16	D0	USART_A_RX	PD9	USART3
17	GND	-	-	-	18	D42	TIM_A_PWM1N	PE8	TIM1_CH1N
19	D28	OCTOSPI_IO3	PE15	OCTOSPI	20	D41	TIM_A_ETR	PE7	TIM1_ETR
21	D29	OCTOSPI_IO1	PB0	OCTOSPI	22	GND	-	-	-
23	D30	OCTOSPI_IO0	PE12	OCTOSPI	24	D40	TIM_A_PWM2N	PE10	TIM1_CH2N
25	D31	OCTOSPI_IO2	PE14	OCTOSPI	26	D39	TIM_A_PWM3N	PE12	TIM1_CH3N
27	GND	-	-	-	28	D38	TIM_A_BKIN2	PE14	TIM1_BKIN2
29	D32	TIM_C_PWM1	PA0	TIM2_CH1	30	D37	TIM_A_BKIN1	PE15	TIM1_BKIN
31	D33	TIM_D_PWM1	PA8	TIM1_CH1	32	D36	TIM_C_PWM2	PB10	TIM2_CH3
33	D34	TIM_B_ETR	PE0	TIM4_ETR	34	D35	TIM_C_PWM3	PB11	TIM2_CH4

Note: The OCTOSPI interface is used in quad mode communication without DQS to support Quad-SPI memories.

UM2581 - Rev 5 page 37/49

7.2 ST morpho connector (CN11 and CN12)

The ST morpho connector consists of male pin header footprints (CN11 and CN12, not soldered by default). They can be used to connect the STM32 Nucleo-144 board to an extension board or a prototype/wrapping board placed on top of the STM32 Nucleo-144 board. All signals and power pins of the STM32 are available on the ST morpho connector. An oscilloscope, a logic analyzer, or a voltmeter can also probe this connector.

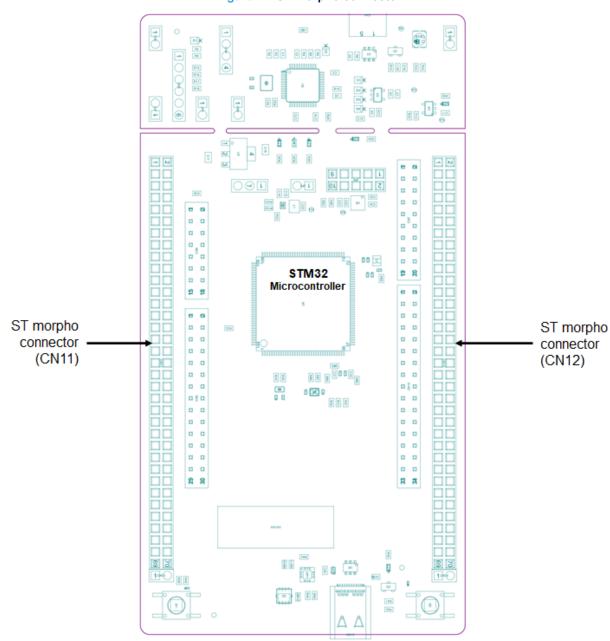


Figure 17. ST morpho connector

Table 21 shows the pin assignments for the STM32 on the ST morpho connector.

Table 21. Pin assignment of the ST morpho connector

CN11 odd pins		CN11 even pins		CN12 o	dd pins	CN12 even pins	
Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name
1	PC10	2	PC11	1	PC9	2	PC8

UM2581 - Rev 5 page 38/49

C	N11 odd pins	CN11 ev	en pins	CN12 o	dd pins	CN12 even pins		
Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	
3	PC12	4	PD2	3	PB8	4	PC6	
5	VDD	6	5V_EXT	5	PB9	6	NC	
7	PH3_BOOT0 ⁽¹⁾	8	GND	7	VREFP ⁽²⁾	8	5V_STLK ⁽³⁾	
9	PF6	10	NC	9	GND	10	PD8	
11	PF7	12	IOREF	11	PA5	12	PA12	
13	PA13 ⁽⁴⁾	14	NRST	13	PA6	14	PA11	
15	PA14 ⁽⁴⁾	16	3V3	15	PA7	16	NC	
17	PA15	18	5V	17	PB6	18	PB11	
19	GND	20	GND	19	PC7	20	GND	
21	PB7	22	GND	21	PA9	22	PB2	
23	PC13	24	VIN	23	PA8	24	PB1	
25	PC14	26	NC	25	PB10	26	PB15	
27	PC15	28	PA0	27	PB4	28	PB14	
29	PH0	30	PA1	29	PB5	30	PB13	
31	PH1	32	PA4	31	PB3	32	AGND	
33	VBAT	34	PB0	33	PA10	34	NC	
35	PC2	36	PC1	35	PA2	36	PF5	
37	PC3	38	PC0	37	PA3	38	PF4	
39	PD4	40	PD3	39	GND	40	PE8	
41	PD5	42	PG2 ⁽⁵⁾	41	PD13	42	PF10	
43	PD6	44	PG3 ⁽⁵⁾	43	PD12	44	PE7	
45	PD7	46	PE2	45	PD11	46	PD14	
47	PE3	48	PE4	47	PE10	48	PD15	
49	GND	50	PE5	49	PE12	50	PF14	
51	PF1	52	PF2	51	PE14	52	PE9	
53	PF0	54	PF8	53	PE15	54	GND	
55	PD1	56	PF9	55	PE13	56	PE11	
57	PD0	58	PG1	57	PF13	58	PF3	
59	PG0	60	GND	59	PF12	60	PF15	
61	PE1	62	PE6	61	PG14 ⁽⁵⁾	62	PF11	
63	PG9 ⁽⁵⁾	64	PG15 ⁽⁵⁾	63	GND	64	PE0	
65	PG12 ⁽⁵⁾	66	PG10 ⁽⁵⁾	65	PD10	66	PG8 ⁽⁵⁾	
67	NC	68	PG13 ⁽⁵⁾	67	PG7 ⁽⁵⁾	68	PG5 ⁽⁵⁾	
69	PD9	70	NC	69	PG4 ⁽⁵⁾	70	PG6 ⁽⁵⁾	

- 1. The default state of BOOT0 is 0. It can be set to 1 when a jumper is plugged on the pins 5-7 of CN11.
- 2. V_{REFP} is not connected to CN12 by default (SB115 OFF).
- 3. 5V_STLK is the 5V power signal, coming from the ST-LINK/V2-1 USB connector. It rises before the 5V signal of the board.
- 4. PA13 and PA14 are shared with SWD signals connected to ST-LINK/V2-1. If the ST-LINK part is not cut, it is not recommended to use them as I/O pins.
- 5. PG2 to PG15 can have a different I/O level than other I/Os because supplied by VDDIO.

UM2581 - Rev 5 page 39/49

8 NUCLEO-L552ZE-Q board information

8.1 Product marking

The stickers located on the top or bottom side of the PCB provide product information:

- Product order code and product identification for the first sticker
- Board reference with revision, and serial number for the second sticker

On the first sticker, the first line provides the product order code, and the second line the product identification.

On the second sticker, the first line has the following format: "MBxxxx-Variant-yzz", where "MBxxxx" is the board reference, "Variant" (optional) identifies the mounting variant when several exist, "y" is the PCB revision and "zz" is the assembly revision, for example B01. The second line shows the board serial number used for traceability.

Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

"E" or "ES" marking examples of location:

- On the targeted STM32 that is soldered on the board (For an illustration of STM32 marking, refer to the STM32 datasheet "Package information" paragraph at the www.st.com website).
- Next to the evaluation tool ordering part number that is stuck or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

To use the same commercial stack in their applications, the developers may need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

UM2581 - Rev 5 page 40/49

9 Limitations

9.1 RSS/bootloader limitation

Issue observed:

The STM32L5 part soldered on NUCLEO-L552ZE-Q that embeds the bootloader V9.0 is affected by the limitations described in Section 6.11 RSS/bootloader.

Proposed workaround:

Refer to Section 6.11 RSS/bootloader to detail the workaround.

Parts impacted:

This applies only to the NUCLEO-L552ZE-Q with the finished good (FG) **NUL552ZEQ\$AU1** (Sticker available on the top side of the board).

9.2 SMPS limitation

Issue observed:

The STM32L5 part soldered on NUCLEO-L552ZE-Q embeds an internal SMPS. The sample revision rev B embeds two SMPS limitations: **SMPS regulation loss upon transiting into SMPS LP mode**, and **Unpredictable SMPS state at power-on**. Refer to errata sheet *STM32L552xx/562xx device errata* (ES0448) for more details.

Proposed workaround:

Refer to errata sheet STM32L552xx/562xx device errata (ES0448).

Parts impacted:

This applies only to the NUCLEO-L552ZE-Q with the finished goods (FG) **NUL552ZEQ\$AU1** and **NUL552ZEQ\$AU2** (Sticker available on the top side of the boards).

UM2581 - Rev 5 page 41/49

10 Federal Communications Commission (FCC) and Industry Canada (IC) Compliance Statements

10.1 FCC Compliance Statement

Part 15.19

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Part 15.21

Any changes or modifications to this equipment not expressly approved by STMicroelectronics may cause harmful interference and void the user's authority to operate this equipment.

Part 15.105

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on, the user is encouraged to try to correct interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note: Use only shielded cables.

Responsible party (in the USA)

Terry Blanchard
Americas Region Legal | Group Vice President and Regional Legal Counsel, The Americas STMicroelectronics, Inc.
750 Canyon Drive | Suite 300 | Coppell, Texas 75019
USA

Telephone: +1 972-466-7845

10.2 IC Compliance Statement

Industry Canada ICES-003 Compliance Label: CAN ICES-3 (B) / NMB-3 (B).

UM2581 - Rev 5 page 42/49

11 CE conformity

11.1 CE / RED

EN 55032 / CISPR32 (2012) Class B product

Warning: this device is compliant with Class B of EN55032 / CISPR32. In a residential environment, this equipment may cause radio interference.

Avertissement : cet équipement est conforme à la Classe B de la EN55032 / CISPR 32. Dans un environnement résidentiel, cet équipement peut créer des interférences radio.

Simplified CE declaration of conformity:

ST Microelectronics hereby declares that the device conforms with the essential requirements of Directive 2014/53/EU. The declaration of conformity can be found at www.st.com.

UM2581 - Rev 5 page 43/49

Revision history

Table 22. Document revision history

Date	Version	Changes
30-Sep-2019	1	Initial release
28-Jan-2020	2	Added: Section 8 Limitations Updated: Section 6.11 RSS/bootloader Section 9 and Section 10 switched to Class B Table 20
17-Mar-2020	3	Added: NUL552ZEQ\$AU2 to impacted parts in Section 8.2 SMPS limitation
30-Jun-2020	4	Section 8 Limitations regarding limited support to SFI through the bootloader towards JTAG
20-May-2022	5	Added: Section 8 NUCLEO-L552ZE-Q board information Updated: Table 16 and Table 20 for OCTOSPI interface Removed: Demonstration software section

UM2581 - Rev 5 page 44/49

Contents

1	Feat	Features						
2	Orde	ring in	formation	3				
	2.1	Produc	cts and codification	3				
3	Deve	elopmei	nt environment	4				
	3.1	Systen	n requirements	4				
	3.2	Develo	opment toolchains	4				
4	Conv	ention	s	5				
5	Quic	k start		6				
	5.1		g started					
	5.2	Defaul	t board configuration	6				
6	Hard	ware la	yout and configuration	8				
	6.1		2L5 Nucleo-144 board layout					
	6.2		inical drawing					
	6.3	Embed	dded ST-LINK/V2-1	12				
		6.3.1	Drivers	12				
		6.3.2	ST-LINK/V2-1 firmware upgrade	12				
		6.3.3	NUCLEO ST-LINK/V2-1 hardware configuration	13				
	6.4	Power	supply	15				
		6.4.1	External power supply input	15				
		6.4.2	Programing/debugging when the power supply is not from ST-LINK (5V_STLK)	21				
		6.4.3	External power supply output	21				
		6.4.4	Internal power supply	22				
	6.5	LEDs.		22				
	6.6	Push-b	outtons	23				
	6.7	IDD m	easurement	23				
	6.8	JP4 VI	DD_MCU voltage selection 1V8 or 3V3	23				
	6.9	OSC c	lock sources	24				
		6.9.1	LSE: OSC 32 KHz clock supply	24				
		6.9.2	OSC clock supply	24				
	6.10		sources					
	6.11	RSS/b	ootloader					
		6.11.1	Limitation					
		6.11.2	Boot from RSS					
	6.12	Virtual	COM port: LPUART or USART	26				

	6.13	USB Type-C [®] FS	27
		6.13.1 USB FS device	27
		6.13.2 UCPD	27
		6.13.3 USB Type-C® connector	28
	6.14	Jumper configuration	29
	6.15	Solder bridge configuration	30
7	Exte	ension connectors	35
	7.1	Zio connectors supporting ARDUINO® Uno V3	35
	7.2	ST morpho connector (CN11 and CN12)	38
8	NUC	CLEO-L552ZE-Q board information	40
	8.1	Product marking	40
9	Limit	itations	41
	9.1	RSS/bootloader limitation	41
	9.2	SMPS limitation	41
10		eral Communications Commission (FCC) and Industry Canada (•
	10.1	FCC Compliance Statement	42
	10.2	IC Compliance Statement	42
11	CE c	conformity	43
	11.1	CE / RED	43
Rev	ision I	history	44
List	of tab	bles	47
l ist	of fig	nures	48

List of tables

Table 1.	Ordering information	. 3
Table 2.	Codification explanation	. 3
Table 3.	ON/OFF convention	. 5
Table 4.	Default jumper configuration	. 6
Table 5.	ST-LINK jumper configuration	13
Table 6.	SWD debug connector (CN5) pinning	14
Table 7.	Power sources capability	15
Table 8.	USB Power protection bypass (SB1)	21
Table 9.	MCU Power supplies	23
Table 10.	LPUART1 connection	26
Table 11.	USART3 connection	26
Table 12.	HW configuration for the USB interface	27
Table 13.	HW configuration for the UCPD feature	28
Table 14.	CN15 USB Type-C® connector pinout	29
Table 15.	Jumper configuration	29
Table 16.	SB configuration	30
Table 17.	Pinout of ARDUINO®-included Zio connector (CN7)	36
Table 18.	Pinout of ARDUINO®-included Zio connector (CN8)	36
Table 19.	Pinout of ARDUINO®-included Zio connector (CN9)	36
Table 20.	Pinout of ARDUINO®-included Zio connector (CN10)	37
Table 21.	Pin assignment of the ST morpho connector	38
Table 22.	Document revision history	44

List of figures

Figure 1.	STM32L5 Nucleo-144 board	
Figure 2.	Default board configuration	. 7
Figure 3.	Hardware block diagram	. 8
Figure 4.	STM32L5 Nucleo-144 board top layout	. 9
Figure 5.	STM32L5 Nucleo-144 board bottom layout	10
Figure 6.	STM32L5 Nucleo-144 board mechanical drawing (in millimeter)	11
Figure 7.	USB composite device	12
Figure 8.	ST-LINK debugger: JP configuration for on-board MCU	13
Figure 9.	ST-LINK debugger: JP configuration for external MCU	14
Figure 10.	JP6 [1-2]: 5V_STLK Power source	16
Figure 11.	JP6 [3-4]: 5V_VIN Power source	17
Figure 12.	JP6 [5-6]: 5V_EXT Power source	18
Figure 13.	JP6 [7-8]: 5V_USB_C Power source	19
Figure 14.	JP6 [9-10]: 5V_CHGR Power source	20
Figure 15.	CN15 USB Type-C® connector pinout	28
Figure 16.	Zio connectors supporting ARDUINO® Uno V3	35
Figure 17.	ST morpho connector	38

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

UM2581 - Rev 5 page 49/49